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The recognition of the existence of lymphatic vessels has 
evolved slowly over the course of history, most impor-

tantly because of the difficulty of visualizing these transparent 
vessels. The first records of lymphatic vessels date back to 
ancient Greece, when Hippocrates (c. 460 to c. 370 BC) and 
Artistotle (c. 384 to c. 322 BC) documented vessels that may 
have been lymphatic vessels. Unequivocal reference to lym-
phatic vessels came from Alexandria, when dissenters includ-
ing Erasistratus (c. 304 to c. 250 BC) described milky arteries 
in the mesentery. In the 17th century, after a 2000-year gap, 
Gaspar Aselli can be credited for being the first to document 
functional lipid absorbing and transporting white veins in the 
mesentery of dogs that had consumed lipid-rich meals. In the 
work that followed Aselli’s initial observations, it was estab-
lished that these vessels made up a distinct vascular network 
that was separate from but connected to the blood vascular 
system. The gross anatomy of the lymphatic vessels was fi-
nally settled from the beginning of the 19th century.1,2

Because of the challenge of their visualization, lymphatic 
vessels have been historically ignored in research. Early anatom-
ic studies relied primarily on intravascular injection of contrast 
agents.2 However, the visualization of lymphatic endothelial 
cells (LECs) was revolutionized during the late 1990s through 
the identification of vascular endothelial growth factor receptor 
(VEGFR)-3,3 prospero homeobox 1 (PROX1) transcription fac-
tor,4 integral membane glycoprotein podoplanin (PDPN),5 and 
lymphatic vessel endothelial hyaluronan receptor 1 (LYVE1)6 as 
lymphatic-specific markers. Research in the field has bloomed 
during the 21st century through molecular genetic studies of de-
veloping embryos that have revealed >50 genes involved in the 
specification, expansion and maturation of lymphatic vessels, 

and in lymphovenous separation.7 Although classical studies 
have considered the lymphatic vasculature as a passive transit 
system from the extracellular space to the blood circulation, the 
lymphatic system has been identified to actively regulate numer-
ous physiological and pathological processes. Moreover, lym-
phatic vessels have been identified in organs where they were 
previously not thought to exist, including the eye, where they are 
involved in intraocular pressure regulation,8–11 and in the central 
nervous system, where they drain cerebral interstitial fluid, cere-
brospinal fluid, macromolecules, and immune cells.12,13 In addi-
tion, pioneering research has revealed lymph node (LN) LECs as 
antigen-presenting cells involved in the induction of peripheral 
tolerance.14 These seminal findings have opened unexpected av-
enues for research on the lymphatic vasculature.

In this review, we will update the state-of-the-art of the lym-
phatic system in development and disease pathogenesis with 
a special focus on cardiovascular diseases. For lymphangio-
genesis in cancer, detailed mechanisms of developmental lym-
phangiogenesis, and the physiology of lymph propulsion, we 
would like to refer the reader to several excellent reviews.7,15,16

Lymphatic Physiology
The lymphatic organ system is unique to vertebrates and is 
composed of draining lymphatic vessels, LNs, and associated 
lymphoid organs. Unlike the blood vessels in the circulatory 
system, lymphatic vessels are blind-ended unidirectional ab-
sorptive vessels that transport interstitial fluid, immune cells, 
and macromolecules to the LNs, and from these back to the 
blood circulation (Figure 1). The lymphatic vessels are found 
in almost every vascularized tissue except neural tissue and 
bone marrow. On the basis of their morphology, function, 
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and hierarchy, lymphatic vessels are classified into capillaries 
(also known as initial lymphatic vessels), precollectors, and 
collectors (Figure 1A). The capillaries (Figure 1B) converge 
into the larger collecting vessels (Figure 1C), which drain via 
chains of LNs (Figure 1D), leading eventually to the thoracic 
duct and the right lymphatic trunk; these drain into the venous 
circulation via four lymphovenous valves located at the junc-
tion of the subclavian and internal jugular veins18 (Figure 1E). 
The lymphatic vasculature plays an integral role in the regula-
tion of tissue fluid homeostasis, immune cell trafficking, and 
absorption of dietary fats.

Tissue Fluid Homeostasis
Under physiological conditions, some of the intravascular 
blood plasma is constantly filtered through the semipermeable 
blood EC (BEC) layer into the extracellular space. The major-
ity of the extravasated interstitial fluid and macromolecules 
are absorbed back by the lymphatic vessels, whereas only 
transient reabsorption may occur in the venules.19 Some tis-
sues are exceptions, for example, the kidney and the intestinal 
mucosa, where venous fluid absorption is sustained by local 
epithelial secretions.19 Overall, it has been estimated that the 
total plasma volume of the human body (≈3 L) extravasates 
from the blood circulation every 9 hours, and the great ma-
jority of this fluid is transported back to systemic circulation 
through the lymphatic system.19 The lymphatic system is thus 
a major contributor to tissue fluid homeostasis (Figure  1).20 
Mice with severe lymphatic defects often exhibit massive em-
bryonic edema and lethality21; and if they survive until the neo-
natal period, they have severe problems caused by pulmonary 
edema.22 The systemic absence of the lymphatic vasculature 
thus seems to be incompatible with life. In adults, the cardinal 
manifestation of lymphatic dysfunction is lymphedema.

Lymphatic capillaries (initial lymphatic vessels) are com-
posed of a single thin layer of LECs. These lymphatic capillar-
ies have little basement membrane components, and lack mural 
cell coverage. The oak-leaf–shaped LECs form overlapping 
flaps that are adherent to the adjacent ECs at their bases via 
button-like junctions that are rich in tight junction-associated 
proteins and vascular endothelial cadherin.17 These flaps oper-
ate as primary valves that allow unidirectional entry of lymph 
and immune cells.23 LECs are tethered to the extracellular ma-
trix with anchoring filaments that may modulate lymphatic 
drainage by opening the primary lymphatic valves in condi-
tions of high interstitial pressure24 (Figure 1B). These unique 

features make lymphatic capillaries highly permissive for the 
passive paracellular passage of fluid, macromolecules, and im-
mune cells. However, it seems that active transcellular mecha-
nisms may also contribute to lymph production, via transport of 
lipids25 and high-density lipoprotein (HDL),26 for example. In 
contrast to capillaries, the collecting lymphatic vessels are lined 
with LECs that are interconnected by tight zipper-like junc-
tions17 and surrounded by a continuous basement membrane.20

Contrary to the popular belief, lymphatic vessels do not 
function simply as a passive transit system but must actively 
overcome net pressure gradients that oppose flow. To do so, 
the collecting vessels contain intraluminal valves to prevent 
backflow and are covered by smooth muscle cells, which peri-
odically contract to drive lymph forward. In addition, extrinsic 
compression by the surrounding tissue during muscle activity 
significantly contributes to lymph propulsion. The lymphatic 
vessel segment flanked by 2 valves is called a lymphangion, a 
contractile unit that propels lymph into the next lymphangion 
through the interposed valve in a unidirectional manner16,20 
(Figure 1C). These intricate features of lymphatic physiology 
have been recently reviewed elsewhere.16

Immune Cell and Soluble Antigen Trafficking
Lymphatic vessels are crucial conduits not only for the traf-
ficking of leukocytes from peripheral tissues to their draining 
LNs but also for the drainage of soluble antigens. Although 
tissue resident dendritic cells (DCs) take up antigens and mi-
grate to LNs for antigen presentation, soluble antigens transit 
to LNs faster than DCs, which is thought to prime the LN 
for the arrival of the antigen-presenting cells.27 Interestingly, 
the entry of soluble antigens from the LN lymphatic sinus-
es to the reticular LN conduits occurs in a size-dependent 
manner. Although large antigens are taken up by subcapsu-
lar macrophages and paracortical DCs, small antigens (<70 
kDa) can directly enter the T- and B-cell zones.28 Recently, 
LN LECs were found to contain plasmalemma vesicle–asso-
ciated protein–positive transendothelial pores that regulate the 
size-selective entry of lymph-borne antigens to the reticular 
conduits.29 Plasmalemma vesicle–associated protein–deficient 
mice lacked the pore-associated diaphragms, which markedly 
facilitated the entry of antigens and lymphocytes through the 
floor of the subcapsular sinus.29

The entry of leukocytes and antigen-presenting cells into 
lymphatic vessels and their emigration from the LN subcap-
sular sinus into the parenchyma is actively regulated by LECs 
through the expression of several chemokines and adhesion 
molecules.27,30 Perhaps the best studied of these are the lym-
phoid homing chemokines, CCL21 and CCL19, that potently 
guide and recruit activated DCs and certain other leukocytes 
that express the cognate receptor CCR7. Mice lacking CCR7 
ligands have impaired DC and T-cell homing to LNs and can-
not mount adaptive immune responses.30 In the LN, LECs 
generate functional CCL21 gradients through the expression 
of the CCL21/CCL19 scavenger receptor CCRL1 to allow 
emigration of DCs into LN parenchyma.31 LN LECs also ex-
press CCL21, which may promote the entry of CCR7+ DCs 
into the LNs,32 and several adhesion molecules, such as in-
tercellular adhesion molecule-1, which may synergize with 
CCL21 to promote lymphocyte binding and transmigration 

Nonstandard Abbreviations and Acronyms

BEC	 blood endothelial cell
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across the LECs.33 DCs have also the ability to transmigrate 
to the lymphatic vessels using the plexin-A1/neuropilin-1 re-
ceptor complex, which binds to semaphorin-3A expressed on 
LECs.34

In the absence of dermal lymphatic vasculature in K14-
VEGFR3-Ig transgenic mice, the humoral immune response 
to vaccination is impaired.35 However, the mice are still able 
to mount robust albeit delayed T-cell responses. Although in 
wild-type mice the T-cell activation takes place in the LNs, 
this process was found to occur in the spleen of the K14-
VEGFR3-Ig mice.35 Interestingly, the lack of dermal lymphat-
ic vasculature resulted in failure to induce tolerance against 
exogenous antigen. Furthermore, aged K14-VEGFR3-Ig mice 
showed multiple signs of autoimmunity, highlighting the im-
portance of constant flow of abundant self-antigens that bathe 
the LNs to delete autoreactive T cells.35 Interestingly, LECs 
were recently found to also function as tolerogenic antigen-
presenting cells, as explained below.

Peripheral Immune Tolerance
T cells sometimes escape thymic mechanisms of central im-
mune tolerance. Previous work has attributed peripheral im-
mune tolerance to the cross-presentation of tissue-derived 
antigens by quiescent tissue-resident DCs to self-reactive T 
cells, leading to anergy or deletion. However, several recent 
studies have identified that LN stromal cells and LN LECs 
are active contributors to the induction of peripheral tolerance 
by expressing peripheral tissue antigens, major histocompat-
ibility complex (MHC) class I and MHC class II molecules, 
and a variety of immunoregulatory factors including high lev-
els of the coinhibitory receptor  programmed death-ligand 1 
(PD-L1) and low levels of the costimulatory factors.14 LECs 
present peripheral tissue antigen on MHC I together with 

rather low levels of costimulatory molecules and high levels 
of coinhibitory PD-L1, resulting in inactivation of the CD8+ T 
cells that recognize these peripheral antigens.14 The deletion 
was selectively mediated by PD-L1 expressed on LECs and 
blockade of this receptor prevented the deletion of tyrosinase-
specific CD8+ T cells, resulting in autoimmune vitiligo.36

LECs also express MHC II, but mechanistic experiments 
revealed that they do not present peripheral tissue antigens 
on MHC II molecules to CD4+ T cells caused by the lack 
of H2-M, which is required to load the antigens onto MHC 
II.37 Instead, LECs transfer peripheral tissue antigens to DCs, 
which subsequently present them to CD4+ T cells to induce 
anergy.37 Overall, the lymphatic system is thus important not 
only in the initiation of the adaptive immune response, espe-
cially in the case of humoral immunity, but also in promoting 
self-tolerance.

The density of the lymphatic vasculature is especially high 
in the skin and in the respiratory and gastrointestinal systems, 
which may reflect the importance of the lymphatic system in im-
mune surveillance against foreign antigens and microorganisms. 
However, the particularly dense lymphatic vasculature network 
of the gut also has a unique role in dietary fat absorption.

Absorption of Dietary Lipids
The absorption of dietary nutrients is critically dependent on 
intestinal villi, which consist of finger-like enterocyte-lined 
extensions of the gut wall filled with connective tissue con-
taining a cage-like blood capillary network and a 1 or 2 cen-
tral lymphatic vessels called the lacteals.38,39 Most nutrients 
are absorbed by blood vessels, but the passive diffusion of 
particles of high molecular weight or colloidal nature is lim-
ited across BECs. Therefore, the lacteals are essential for the 
uptake of dietary fats and fat-soluble vitamins. Advances in 
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intravital imaging of lacteals have revealed that they contract 
through the activity of the surrounding smooth muscle cells 
regulated by the autonomic nervous system.38

Although the mechanisms of lipid processing by the en-
terocytes have been explored in detail, the mechanism on how 
these lipid particles are delivered into the lacteals is still un-
clear. Early transmission electron microscopic studies have 
revealed that both passive paracellular and active transcellular 
transport mechanisms could contribute to lymph production 
in lacteals.40 The transcellular transport of lipids has also been 
shown in a tissue engineered model of intestinal enterocyte 
and lacteal interaction.25 However, cultured LECs do not form 
button-like junctions, and thus do not mimic the junctional 
profile of lacteals in vivo.39

In mice, intestinal lacteals develop during the early post-
natal period. Mice with genetic defects causing lymphatic 
dysfunction, such as the Chy mice that have a heterozygous 
missense mutation in Vegfr3 that inactivates its kinase activ-
ity,41 Vegfc heterozygous,41,42 and Prox1 heterozygous mice43 
as well as mice deleted of the ANG2 ligand of the endothelial 
TIE2 receptor tyrosine kinase,44 accumulate milky peritoneal 
fluid known as chylous ascites. In adults, ascites most often 
results from primary lymphedema, malignancies affecting the 
abdominal lymphatic system, such as ovarian carcinoma or 
lymphoma, or surgical trauma to lymphatic vessels.45

Importantly, owing to their special uptake and transport 
properties, the lacteals provide an appealing drug-delivery 
route. Drugs taken up by lacteals bypass the hepatic first-pass 
metabolism. Therefore, engineering drugs that are selective-
ly taken up by the lacteals constitutes an elegant strategy to 
increase the oral bioavailability of rapidly liver-metabolized 
drugs.46 Below, we discuss aspects of lymphatic development, 
and later return to lacteals in the context of obesity and car-
diovascular disease.

Development of the Lymphatic Vascular System
Origins and Mechanisms of Development
A widely accepted dogma in the field has been that the lym-
phatic vessels first arise from embryonic veins and thereafter 
expand by sprouting and proliferation, as initially postulated 
in 1902 by the American anatomist Florence Sabin47,48 and 
shown by using, eg, Tie2+ cell lineage tracing in mice.49 
However, in 1910, a seemingly contradictory theory by 
Huntington and McClure proposed that lymphatic vessels 
arise from mesenchymal LEC progenitors.50 On the basis of 
expression analyses, such precursor cells termed lymphan-
gioblasts were described in Xenopus, chicken, and mice.51–53 
Grafting experiments by Wilting et al52 further suggested that 
the avian lymphatic vasculature has a dual origin, with con-
tribution from both venous- and mesenchymal-derived cells. 
Recent cell lineage tracing studies have now unequivocally 
demonstrated that both venous- and nonvenous-derived LECs 
contribute to the lymphatic vasculature also in mice.54–56

During embryonic development, lymphatic vessels begin 
to form after the onset of blood circulation. In humans, the 
first lymphatic vessels are observed during embryonic weeks 
6 and 7.57 In mice, the first LECs arise at around embryonic 
day (E) 9.5 to 10, when a subpopulation of venous ECs in 

the common cardinal vein (and some also in the intersomitic 
veins and the superficial venous plexus) induce the expression 
of the homeobox transcription factor PROX1 and commit to 
the lymphatic lineage4,58–62 (Figure 2A and 2B). By E10.5, the 
venous-derived LEC progenitors exit the veins and migrate 
as loosely attached strings of initial LECs (Figure  2C) that 
subsequently coalesce to form the first primitive lymphatic 
structures called the lymph sacs58,59 (Figure 2D). Recently, a 
high-resolution ultramicroscopic study showed that the jugu-
lar lymph sacs consist of 2 distinct vessels: the primordial tho-
racic duct and the peripheral longitudinal lymphatic vessel.59 
Cells connecting the primordial thoracic duct and the cardinal 
vein further coalesce to form the lymphovenous valves that 
play a critical role in preventing blood from entering the lym-
phatic system.59,63,64

A major part of the peripheral lymphatic vascular tree de-
velops centrifugally from the lymph sacs through the process 
of lymphangiogenesis, the sprouting growth of new lymphatic 
vessels from pre-existing ones.49,54,55 However, genetic tracing 
of Prox1 and Tie2-lineage cells has revealed a subset of LECs 
that do not originate from pre-existing LECs or venous ECs54–56  
(Figure 2E). In the skin and mesentery, these LECs are ini-
tially observed as isolated clusters of cells separate from the 
sprouting vascular front; the clusters subsequently coalesce to 
form vessels through the process of lymphvasculogenesis.54,55 
In the case of mesenteric lymphatic vessels, cKit lineage he-
mogenic endothelium-derived cells were identified as the al-
ternative nonvenous source of LECs55 (Figure 2E). Hemogenic 
endothelium was also suggested to contribute to cardiac lym-
phatics56 while the origin of dermal LEC progenitors is yet 
to be determined.54 An interesting question is whether such 
progenitors exist in adult mice and whether they are mobilized 
in various disease processes.

LEC Specification
In the vasculature, PROX1 has been considered a master-regu-
lator of the lymphatic phenotype although it is also expressed 
in venous valves65 and on the concave side of cardiac valves.66 
In Prox1 null embryos, LECs in the cardinal vein wall bud off 
in an unpolarized manner, but fail to fully differentiate and 
proliferate.4 In contrast, overexpression of PROX1 in BECs 
upregulates the expression of LEC-specific markers.61,67

The signals resulting in polarized PROX1 expression in 
the cardinal vein remain somewhat unclear. SRY-box (SOX)-
18 transcription factor, which shows uniform expression in 
the cardinal vein and is required for LEC specification up-
stream of Prox1, but only in the C57BL/6 background.60 In 
other genetic strains, the related SOX7 and SOX17 transcrip-
tion factors were able to substitute for the lack of SOX18.68 
In addition, the COUP transcription factor II (COUP-TFII) is 
also required for the induction of Prox1.69 Furthermore, reti-
noic acid may play a role as it has been shown to promote 
lymphangiogenesis.70 The expression of the retinoid acid-
degrading enzyme CYP26B1 is polarized in the areas where 
the initial LECs bud off. Enhanced retinoic acid signaling in 
Cyp26b1 null-mice resulted in an aberrant increase of LEC 
progenitors in the cardinal vein and in hyperplastic lymph 
sacs and lymphatic vessels.71 Similarly, Notch signaling, 
which orchestrates cell-fate decisions, seems to play a role in 
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PROX1 regulation and LEC specification. Loss of Notch1 in 
LEC progenitors increased the number of LEC progenitors in 
the cardinal vein and resulted in excessive numbers of LECs 
emerging from the cardinal vein. On the contrary, Notch acti-
vation in LEC progenitors resulted in mis-specified LECs and 
the appearance of BECs in peripheral lymphatic vessels.72 In 
zebrafish, bmp2 signaling may also negatively regulate the 
emergence of LECs by inducing the expression of mir-31 and 
mir-181a and by attenuating the expression of prox1.73

A recent study by Nicenboim et al74 challenged the concept 
that venous fate is prerequisite for the induction of LEC fate. 
Using a photoconversion approach in zebrafish, the authors 
showed that the ventral side of the posterior cardinal vein harbors 
scattered ECs that express flt1 (which is normally expressed in 
arterial ECs) and undergo asymmetric cell division to give rise 
to cells of arterial, venous, and lymphatic fates. On acquisition of 
prox1 expression, these specialized angioblasts proliferate, trans-
locate to the dorsal aspect of the vein, and bud off to form the 
thoracic duct. The authors further identified endoderm-derived 
wnt5b, a canonical Wnt ligand, as the inductive signal for prox1 
expression and LEC specification.74 It remains to be shown if 
mammalian veins also harbor such asymmetrically dividing an-
gioblasts that can contribute to the lymphatic vasculature.

Expansion of the Lymphatic Vascular Tree
The budding of the LECs from the lymph sacs is absolutely 
dependent on VEGFC signaling as demonstrated by the lack of 
lymphatic vessels in Vegfc-deficient mice,21,59 whereas the relat-
ed Vegfd is dispensable for lymphatic development.75 VEGFC 

and VEGFD are both ligands for VEGFR3, but upon proteolytic 
processing, they can also bind and activate VEGFR2.76 During 
development, VEGFR3 is also expressed in the blood vascula-
ture and Vegfr3 gene-targeted mice die at ≈E10.5 due to defec-
tive development of the cardiovascular system.77 Later in the 
development VEGFR3 expression is downregulated except in 
lymphatic vessels and fenestrated BECs,78 while being dynami-
cally upregulated in angiogenic tip cells.79 Interestingly, com-
pound deletion of both Vegfc and Vegfd does not recapitulate 
the early embryonic lethality observed in Vegfr3-null mice, sug-
gesting that VEGFR3 may have other yet to be identified mech-
anisms of activation,80 for example, via β

1
 integrin signaling.81

The interaction of collagen and calcium binding EGF do-
mains 1 (CCBE1) protein with VEGFC/VEGFR3 signaling has 
recently received much attention. ccbe1 was initially identified 
in zebrafish forward-genetic screens as being indispensible for 
lymphangiogenesis.82 Subsequent work associated CCBE1 mu-
tations with Hennekam syndrome, a form of hereditary lymph-
edema.83 CCBE1 is expressed near developing lymphatic vessels 
and highly in the developing heart in embryos, and it acts in an 
LEC nonautonomous manner to enhance the activity of VEGFC. 
In mice that lack Ccbe1, the budding of initial LECs from the 
cardinal vein is halted, and the lymph sacs fail to form.59,84 
Mechanistically, CCBE1 was shown to bind select pericellular 
matrix proteins and to enhance VEGFR3 signaling by promot-
ing the cleavage of VEGFC, but not VEGFD, into its active, fully 
mature form by the ADAM metallopeptidase with thrombospon-
din type 1 motif 3 (ADAMTS3) metalloprotease84–86 and possibly 
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by other proteases (Figure 3). Recently, Adamts3 knockout em-
bryos were show to be massively edematous and embryonically 
lethal after E15 and to lack any peripheral lymphatic vascula-
ture.87 Surprisingly, there was no evidence of a connective tissue 
phenotype although procollagen has been shown to be a major 
substrate for ADAMTS3.87 Additional studies should elucidate 
the detailed cellular mechanisms of ADAMTS3 function, espe-
cially its effect on the directionality of LEC sprouting.

In addition to VEGFR3, VEGFC also binds neuropilin-2 
(NRP2), an axon guidance receptor expressed in veins and 
lymphatic vessels. NRP2 has a specific role in lymphatic vessel 
development because Nrp2 mutant mice have lymphatic capil-
lary hypoplasia without blood vascular defects.88 Interestingly, 
NRP2 can bind not only VEGFC and VEGFD but also VEGF, 
simultaneously with VEGFR2 or VEGFR3 in vitro.41,89,90 Nrp2 
and Vegfr3 compound heterozygotes, but not Nrp2 and Vegfr2 
compound heterozygotes, display defective lymphatic vascu-
lar development,91 indicating that in vivo, NRP2 genetically 
interacts with VEGFR3, but not with VEGFR2. Thus, NRP2 
functions as a coreceptor for VEGFR3 and may cooperate 
to increase the affinity of LECs toward VEGFC/D to enable 
maximal sensing of growth factor gradients.

Maturation of the Lymphatic Vascular Tree
After the establishment of the primitive lymphatic plexus, the 
lymphatic vessels undergo maturation to form a hierarchical 
tree composed of lymphatic capillaries, precollectors, and 
collecting vessels (Figure  2F). Collecting lymphatic vessels 
form valves, recruit smooth muscle cells, and deposit base-
ment membrane.7 Furthermore, from E17.5 to postnatal day 
(P) 28, the initial lymphatic vessels transition from zipper-like 
junctions to button-like junctions,92 a process in which ANG2 
signaling has been implicated.93

Several signaling pathways are involved in the maturation 
and maintenance of the collecting lymphatic vessels. Perhaps 
the best characterized is FOXC2/calcineurin/NFATC1 signal-
ing, which is indispensible not only for both the maturation of 
collecting lymphatic vessels and for the formation of valves but 
also for the maintenance of lymphatic valves and vessel integ-
rity during postnatal life.94–97 Mechanistically, FOXC2 cooper-
ates with calcineurin/NFTAC1 transcription factor during the 
maturation of collecting lymphatic vessels. Several other mol-
ecules involved in the maturation of lymphatic vessels have 
been identified, including CX26, CX37, and CX43,98 Reelin,99 
elastin microfibril interfacer 1 (EMILIN1),100,101 semaphorin 
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3A (SEMA3A)-NRP1,102,103 ephrin-B2/EPH receptor B4 
(EFNB2/EPHB4) signaling,104,105 growth differentiation fac-
tor 2 (GDF2/BMP9),106 activin A receptor type I (ALK1),107 
transforming growth factor beta receptor II (TGFBR2),108 and 
GATA binding protein 2 (GATA2)109; these and the role of 
lymphatic flow–induced mechanotransduction94,96,110 have re-
cently been reviewed elsewhere.7,111

Since the discovery of the first LEC-specific marker pro-
teins ≈20 years ago, there has been a dramatic increase in our 
understanding of the molecular mechanisms involved in lym-
phatic vascular development. Importantly, this knowledge has 
furthered our understanding of the involvement of lymphatic 
vasculature in human diseases, as highlighted below.

Lymphatic System in the Pathogenesis of 
Cardiovascular Diseases

Lymphedema
Impaired lymphatic drainage results in an abnormal accu-
mulation of interstitial fluid defined as lymphedema. On the 
etiological basis, lymphedemas are classified as inherited 
(primary) or acquired (secondary) lymphedemas. Primary 
lymphedemas result from defects in genes involved in lym-
phatic vessel development, involving most often the VEGFC/
VEGFR3 signaling axis. Secondary lymphedemas arise from 
damage or physical obstruction of lymphatic vessels or LNs.112

Secondary Lymphedemas
Typical causes include chronic inflammation with fibrosis, 
malignant tumors, physical disruption, radiation damage, 
and certain infectious agents. Severe edema of the upper 
limb may complicate the effective treatment of breast can-
cer. The surgical removal and irradiation of the breast and 
associated axillary LNs results in lymphedema in 6% to 30% 
of patients.113 GJC2 (CX47) mutations are associated with a 
predisposition toward the development of postmastectomy 
lymphedema.114

Perhaps the most dramatic example of secondary lymph-
edema is seen in lymphatic filariasis, a neglected tropical dis-
ease that affects ≈40 million people in the endemic areas of 
Africa, South America, and South-East Asia. Lymphatic fila-
riasis is caused by mosquito-transmitted parasitic nematodes, 
such as Wuchereria bancrofti (in 90% of the cases), which 
specifically target and dwell in lymphatic vessels and LNs for 
years, resulting in extensive fibrosis. This can result in stig-
matizing edema of the external genitalia and lower limbs that 
is so massive as to earn the appellation elephantiasis. William 
C. Campbell and Satoshi Ōmura were awarded one half of the 
2015 Nobel Prize in Physiology or Medicine for the discovery 
of a class of anthelmintics that have radically lowered the in-
cidence of lymphatic filariasis (and onchocerciasis) via annual 
mass administrations.

Another tropical lymphedema is podoconiosis (endemic 
nonfilarial elephantiasis), a noninfectious geochemical dis-
ease of the lower limb lymphatic vessels resulting from 
chronic barefoot exposure to red-clay soil derived from volca-
nic rock. Our limited knowledge of its pathogenesis suggests 
that mineral particles in red-clay soils are absorbed through 
the skin of the foot and engulfed by macrophages in the lym-
phatic system of the lower limbs, inducing an inflammatory 

response in the lymphatic vessels resulting in fibrosis and ves-
sel obstruction.115 The heritability of podoconiosis accounts 
for 63% of the cases, and the association with variants in the 
HLA class II locus suggests that the condition is an abnor-
mal T-cell–mediated inflammatory reaction to the mineral 
particles.115

Primary Lymphedemas
Primary lymphedemas have been previously subclassified on 
the basis of their onset into congenital, peripubertal, and late-
onset lymphedema. Some lymphedemas occur as a part of a 
syndrome. To date, at least 19 different genes have been as-
sociated with different isolated or syndromic lymphedemas.112 
The diagnostic workup of primary lymphedemas involves a 
complex algorithm.116

VEGFC-VEGFR3
VEGFR3 was the first lymphedema gene to be identified, and 
its mutations account for about one half of primary human 
lymphedemas. Heterozygous mutations in the tyrosine kinase 
domain of the receptor inhibit VEGFR3 signaling, often in a 
dominant negative manner, and cause anatomic and functional 
defects in the lymphatic system, resulting in primary congeni-
tal lymphedema also known as Nonne–Milroy lymphedema 
(OMIM 153100).117,118 These patients typically have bilateral 
lower limb lymphedema, which is usually apparent at birth. 
VEGFC mutations have also been identified in a Milroy-
like disease, which is indistinguishable from Nonne–Milroy 
lymphedema.119

CCBE1
Heterozygous or compound heterozygous CCBE1 mutations 
were recently associated with Hennekam lymphangiectasia-
lymphedema syndrome (OMIM 235510), which is character-
ized by lymphedema, lymphangiectasia with systemic/visceral 
involvement, and mental retardation.83 CCBE1 impacts the 
development of lymphatic vessels by regulating VEGFC/
VEGFR3 signaling via a complex mechanism (Figure 3), but 
defects in other organ systems suggest that CCBE1 also exerts 
functions outside of the lymphatic system.

PTPN14
The protein tyrosine phosphatase PTPN14 has been linked to 
lymphedema-choanal atresia syndrome (OMIM 608911).120 
PTPN14 seems to interact with VEGFR3 on VEGFC stimula-
tion, but in contrast to the previously mentioned genetic de-
fects in which hypoplastic lymphatic vasculature is evident, 
mice with a Ptpn14 gene trap show hyperplasia of the lym-
phatic vessels with lymphedema.120 Therefore, hyperactive 
VEGFR3 signaling resulting from the absence of a tyrosine 
phosphatase could also result in lymphedema development.

FOXC2
The transcription factor FOXC2 is downstream of VEGFR3 
signaling and has been associated with late-onset lymph-
edema (hereditary lymphedema II; OMIM 153200), which is 
often associated with distichiasis and ptosis (OMIM 153400), 
and yellow nails (OMIM 153300). Mouse studies indicate that 
an abnormal interaction between lymphatic vessels and mural 
cells and lack of valves may underlie the pathogenesis of this 
disease.94,121
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SOX18
As introduced earlier, the Sox18 transcription factor is in-
volved in the induction of PROX1 expression in LECs. 
Mutations in SOX18 are associated with hypotrichosis-lymph-
edema-telangiectasia syndrome (OMIM 607823). Ragged 
mice, which have Sox18 mutations, also display sparse hair, 
lymphedema, and cutaneous telangiectasias.60,68,122

Other Lymphedema Genes
Several other primary lymphedemas have been linked to 
GATA2, which was recently shown to regulate PROX1 ex-
pression,109,123 the connexins GJC2 (CX47)124,125 and GJA1 
(CX43),126 the mechanically activated ion channel PIEZO1127 
and other genes including HGF,128 KIF11,129 PTPN11,130 
KRAS,130 SOS1,130 RAF1,130 IKBKG,131–134 RASA1,135–137 and 
HRAS,138,139 and a locus in the human chromosome 15q.140

Treatment
Lymphedema remains a relatively common debilitating life-
long disease with limited treatment options, including con-
trolled compression stockings/bandages and physiotherapy. 
Thus, novel curative treatment options are needed. Preclinical 
studies indicate that reconstitution of damaged lymphatic ves-
sels with the aid of lymphangiogenic growth factors provides 
a promising treatment strategy. In a mouse model of Nonne–
Milroy disease, VEGFC gene therapy generated functional 
lymphatic vessels.41 In a mouse model of postmastectomy 
lymphedema, local and transient VEGFC overexpression in-
duced functional lymphatic network restoration in the damaged 
areas.141 VEGFC initially induces aberrant and leaky vessels, 
which is followed by a prolonged period of remodeling, differ-
entiation, and maturation, resulting in a functional network of 
collecting lymphatic vessels containing valves and mural cells. 
Network restoration was further enhanced by concomitant au-
tologous LN transplantation.141 The therapeutic value of LN 
transfer with perinodal VEGFC treatment has been validated 
in large animals142 and is currently advancing to clinical trials 
for the treatment of postmastectomy lymphedema.

Obesity
Excess body weight is the fifth most important risk factor contrib-
uting to the overall disease burden worldwide and especially to 
cardiovascular diseases.143 Obesity is caused by an imbalance be-
tween calorie intake and energy expenditure. The first evidence of 
lymphatic vessel malfunction as a cause of obesity came from the 
paradoxical observation that Prox1+/− mice develop adult-onset 

obesity without changes in energy intake or expenditure.43 Fat 
accumulation around the lymphatic vessels in the Prox1+/− mice 
suggested that the leakage of lymph, which effectively promotes 
adipogenesis in vitro, is the key mechanism by which lymphatic 
vessels promote adipocyte hypertrophy. Adipose tissue accumu-
lation observed in patients with lymphedema and in the skin of 
the Chy mice fits this idea.41,144 However, the interpretation of 
the obesity phenotype in the Prox1+/− mice is difficult because 
PROX1 is also expressed in the liver and skeletal muscle, which 
are key regulators of energy metabolism. Furthermore, fat accu-
mulation does not occur in K14-VEGFR3-Ig mice, and increased 
body weight is not observed in the Chy mice, Vegfc+/− or K14-
VEGFR3-Ig mice, which all have lymphatic vessel dysfunction 
(Table). VEGFR3 expression in inflammatory cells and blood 
vessels as well as the role of VEGFC in lipid absorption also in-
troduce confounding variables.146–148

We recently found a surprising novel mechanism that 
regulates dietary lipid uptake and obesity development in the 
VEGFC-deleted mice.8,149 Deletion of VEGFC in adult mice, 
which have a normally developed lymphatic system, does not 
result in adverse effects on animal health even 6 months after 
gene deletion. Surprisingly, VEGFC deficiency had no effect on 
lymphatic vasculature in the skin, trachea, or LNs, but it caused 
a slow regression of intestinal lymphatic vessels. The atrophy of 
the intestinal lymphatic vessels reduced lipid uptake, increased 
lipid excretion into feces, counteracted obesity, and improved 
glucose metabolism in mice fed a high-fat diet.149 However, no 
accumulation of lipid in the villus interstitium was observed, 
suggesting a feedback mechanism to restrict lipid absorption 
by the enterocytes. A continuous low-level VEGFC-mediated 
sprouting of lacteal vessels could be responsible for the mainte-
nance of lacteal vessel structure.39 Furthermore, VEGFC could 
regulate smooth muscle cell contractions in the villus150; such 
contractions were recently shown to play an important role in 
lipid absorption.38 These findings could open possibilities for 
the development of new drugs to treat dyslipidemia and obesity. 
An overview of the lymphatic vessels roles in lipid absorption 
and transport is presented in Figure 4.

Inflammation
Inflammation is a part of a complex biological response asso-
ciated with protection of tissues against harmful stimuli such 
as pathogens, damaged cells, and irritants.151 Depending on 
the inductive signals, cellular sensors, secreted mediators, and 
target tissue, the associated inflammatory response comes in 

Table.   Body Weight Measurement in Mouse Models With Lymphatic Defects

Mouse Model Gen. Bkgd. Age,* wk Diet† (length) WT Littermates Gene Targeted P Value‡

Chy41 NMRI 20–22 HFD (14 wk) 45.7±1.1 (n=10) 43.5±1.6 (n=5) 0.26

Vegfr3+/LacZ, 77 BL/6J 18–20 HFD (12 wk) 33.3±1.5 (n=5) 34.7±1.0 (n=7) 0.46

K14-VEGFR3-Ig145 FVB 19 HFD (12 wk) 36.4±1.6 (n=5) 34.3±1.6 (n=4) 0.23

Vegfc+/LacZ, 21 ICR×BL/6J 52–54 SD 51.5±0.6 (n=2) 51.0±1.6 (n=4) 0.84

Vegfc+/LacZ, 21 ICR×BL/6J 25–27 SD 45.3±0.9 (n=8) 41.5±1.2 (n=5) 0.02

Only male mice were analyzed. The data is presented as average±SEM. HFD indicates high-fat diet; and WT, wild-type.

*Age when body weight was measured.

†HFD (Research diets, Cat no. D-12451, 45% calories from fat).

‡P value, unpaired 2-tailed t test. We thank Harri Nurmi for collecting these data.
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many flavors that range from highly acute, strong, and transient 
inflammatory responses, such as the ones observed in bacte-
rial infection to chronic, low-level inflammation, such as in 
atherosclerosis and cardiovascular disease.151,152 Nevertheless, 
inflammation is often associated with profound lymphangio-
genesis and lymphatic vessel remodeling.153

It is conceivable that the increased demand for lymphatic 
drainage increases during inflammation, and particularly dur-
ing its resolution; it is of pivotal importance to remove the 
soaring numbers of inflammatory cells, noxious antigens, 
excess cytokines and cellular debris, and to resolve the ede-
ma resulting from increased blood vascular permeability.153 
Accumulating evidence suggests that inflammation-associat-
ed lymphangiogenesis (IAL) is not merely a bystander, but 
profoundly alters the course of inflammation and tissue repair 
as evidenced in studies in which lymphangiogenesis in mice 
has been inhibited or induced experimentally.153 Furthermore, 
newly formed lymphatic vessels that do not regress may leave 
behind a permanent inflammatory memory.154

Role of IAL in Inflammation
The effects of the inhibition of lymphangiogenesis in inflam-
mation have been studied in many mouse models. Blocking 
VEGFR3 signaling with monoclonal antibodies extended the 
duration of inflammation, aggravated the inflammation or 
edema in several experimental models, such as in ultraviolet B 
irradiation–induced skin inflammation,155 oxazolone-induced 
contact hypersensitivity,156 Mycoplasma pulmonis–induced 
airway inflammation,154 chronic inflammatory arthritis157 and 
inflammatory bowel disease.158 Overall, these results indicate 
that IAL is necessary to mount appropriate inflammatory re-
sponses. On the contrary, the induction of lymphangiogenesis 
has beneficial effects in many models. The improved lymphatic 
clearance in K14-VEGFC and K14-VEGFD mice significantly 
limited the severity of acute inflammation and edema in oxa-
zolone-induced contact hypersensitivity and ultraviolet B ir-
radiation–induced skin inflammation.159 Moreover, transgenic 
expression of VEGFC in a model of chronic cutaneous inflam-
mation completely inhibited the development of chronic skin in-
flammation.156 However, a concern in the translatability of these 
approaches relates to inflammatory conditions where pathogens 

could potentially hijack the lymphatic system to gain systemic 
access.153

Regression of Lymphatic Hyperplasia
In the resolution of inflammation, the newly generated 
blood vessels undergo pruning and regress back to the basal 
state.154,160 Unlike blood vessels, the lymphatic vessels do not 
always completely regress after the removal of an inflamma-
tory stimulus, for instance, in mice after Mycoplasma pulmonis 
infection,154 despite administration of steroids.160 However, in 
an experimental model of skin inflammation, the formed LN 
lymphatic vessels almost completely regressed in coordination 
with changes in LN volume.161 In the normally avascular cornea 
that may contain antilymphangiogenic factors,162,163 lymphatic 
vessels are much faster at regressing than blood vessels during 
the resolution of suture-induced corneal neovascularization.164 
Therefore, the regression of lymphatic vessels seems to be tis-
sue and insult dependent. A question of particular importance 
for future studies is what types of inflammatory cascades are 
capable of inducing lymphatic remodeling of permanent nature 
and what is the functional outcome.

Transplant Rejection
A potentially devastating aspect of IAL relates to organ transplan-
tation and particularly to transplant rejection. Transplant rejection 
is associated with an extensive lymphangiogenic response.165 In 
the context of cardiac allografts, blocking VEGFR3 signaling 
increases graft survival, possibly by modulating immune cell 
trafficking.166 Similarly, the cornea has been extensively used to 
analyze the role of lymphangiogenesis in transplant immunol-
ogy. A recent report demonstrated the crucial role of lymphatic 
vessels in mediating corneal allograft rejection and showed that 
antilymphangiogenic therapy increases graft survival.167

Origins of LECs During IAL
Postnatal lymphangiogenesis has, by definition, been thought 
to arise from pre-existing LECs. However, as introduced in the 
context of embryonic development, recent studies have indicat-
ed that non-LEC (and non-BEC) progenitors may also contrib-
ute to lymphvasculogenesis, raising the possibility that similar 
mechanisms may also be reactivated in adults. Macrophage 
transdifferentiation into LECs has been suggested to occur in 
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some models of IAL,168–170 but these studies been inconclusive 
because of the lack of lineage-tracing approaches. However, 
myeloid lineages did not seem to contribute to lymphangiogen-
esis in the skin or mesentery during embryogenesis.54,55,171 In a 
study by Kerjaschki et al172 in male-to-female sex-mismatched 
rejected kidney transplants, some 13% of the primarily newly 
formed LECs contained a Y chromosome and were thus de-
rived from an undetermined source of host cells, indicating a 
dual (or higher tier) origin for the neovessels. Future research 
should address which cell types specifically contribute to the 
newly formed LECs in adult lymphvasculogenesis.

Atherosclerosis and Myocardial Infarction
Atherosclerosis involves a chronic inflammatory disease of the 
arterial wall, and complications related to this condition represent 
the most common cause of morbidity and mortality in Western 
societies.173 The disease develops silently over decades, evolving 
from fatty streaks characterized mainly by macrophages loaded 
with cholesterol esters to advanced plaques with several second-
ary changes. Continuous recruitment of monocytes into plaques 
drives the progression of this chronic inflammatory condition, 
and athereosclerotic inflammation is sustained at least in part by 
the deposition of cholesterol crystals and undesirable immunity 
against cholesterol-associated apolipoproteins.174–176 Although 
the link between cholesterol and inflammation that drives disease 

progression is not completely understood, it is established that 
removal of cholesterol from the arterial wall comprises a step 
toward regression of atherosclerosis.177

The multistep process of cholesterol mobilization from ex-
travascular tissues to biliary and nonbiliary excretion is termed 
reverse cholesterol transport (RCT). Cholesterol removal from 
macrophage stores involves hydrolysis, mobilization, and ef-
flux of cholesterol esters to lipoprotein acceptors such as 
apoAI, which results in the formation of HDL.178 HDL leaves 
the interstitial tissue and is transported through bloodstream 
into the liver for disposal as biliary cholesterol and bile salts 
or to the intestinal wall for transintestinal cholesterol efflux.179 
Although the initial and final steps of RCT have been well 
characterized, it was only recently shown that HDL primar-
ily uses lymphatic vessels in the efflux from the intestitium 
to the bloodstream.26,180 Induction of lymphangiogenesis by 
the administration of VEGFC into the footpad improved lym-
phatic function, decreased footpad cholesterol content, and im-
proved RCT in ApoE−/− mice. In contrast, surgical disruption 
of collecting lymphatic vessels in the popliteal area reduced 
RCT from the footpad by as much as 80%.26 In another study, 
surgical ablation of lymphatic vessels in the tail also blocked 
RCT.181 In Chy mice, which selectively lack dermal lymphatic 
vessels, RCT from the rear footpad was impaired by ≤77%.181 
The relevance of lymphatic RCT in the atherosclerotic aortic 

Figure 5. Lymphatic vessel role in cholesterol 
metabolism, atherosclerosis, and myocardial 
infarction. A, Whole mount staining of adult heart 
showing epicardial lymphatic vessels stained 
for VEGFR3 and LYVE1. B, Schematic overview 
of the heart with myocardial infarction caused 
by the occlusion of the atherosclerotic coronary 
artery. Proliferation of lymphatic vessels occurs 
in the affected area. C, Cross section of an 
atherosclerotic coronary artery and an adventitial 
lymphatic vessel. D, Hypothetical model for 
the role of lymphatic vessels in high-density 
lipoprotein (HDL)–mediated cholesterol removal 
from atherosclerotic plaques. Plasma-derived 
HDL enters the atherosclerotic plaque, interacts 
with ABCA1 or ABCG1 translocases at the plasma 
membrane of a cholesterol-loaded macrophage 
(foam cell, enlarged), binds cholesterol, and may 
exit via lymphatic vessels located in the vicinity 
of the coronary artery. Possible roles of VEGFC 
in atherosclerosis and myocardial infarction are 
highlighted with the bullet points.
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wall was highlighted in an experiment in which atherosclerotic 
aortas of donor ApoE−/− mice were loaded with radiolabeled 
cholesterol and transplanted into recipient ApoE−/− mice that 
were treated with VEGFR3-blocking antibodies to block the 
regrowth of adventitial lymphatic vessels. This prevented the 
cholesterol efflux from the aortic plaques.180

Although the lymphatic uptake of macromolecules is pri-
marily considered paracellular and passive, enabled by the 
unique button-like inter-EC junctions and flaps that can open 
under tension from anchoring filaments,17,24 active transcellular 
routes could possibly also contribute to lymph production.25 
Interestingly, in vitro LECs expressed functional HDL trans-
porters, including scavenger receptor class B member 1 (SR-
BI) and ATP binding cassette subfamily (ABC)-A1, but not 
ABCG1.26 Internalization and transcytosis of HDL by LECs 
were mediated by SR-BI, and this was suggested to contribute 
to lymph production. In vivo, inhibition of SR-BI with block-
ing antibodies inhibited lymphatic uptake of HDL by as much 
as 75%, indicating that active transcellular SR-BI–mediated 
uptake of HDL into lymphatic vessels is a critical step for 
RCT.26 This is a surprising finding, and it would be important 
to determine why HDL prefers lymphatic vessels instead of the 
postcapillary venous system to exit the interstitial space.

Overall, these data indicate that RCT is critically depen-
dent on lymphatic vessels, and that the venous system is not 
enough to sustain RCT. Furthermore, inducing lymphangiogen-
esis could constitute a strategy to enhance RCT. This could be 
especially important in the case of hypercholesterolemia and 
obesity that were shown to directly impair lymphatic vessel 
function.182–185 However, in the context of the arterial wall, RCT 
becomes more difficult as lymphatic vessels are normally local-
ized in the adventitia and do not occur in the intima even in 
advanced atherosclerotic plaques.186 The relevance of lymphatic 
vessels in cholesterol metabolism and development of athero-
sclerosis was further demonstrated in K14-VEGFR3-Ig/low-
density lipoprotein receptor−/−/ApoB100/100 and Chy/low-density 
lipoprotein receptor−/−/ApoB100/100 mice.187 The established lym-
phatic defects in these 2 models were associated with increased 
levels of atherogenic lipoproteins, reduced periaortic lymphatic 
vessels, and more numerous atherosclerotic plaques. It remains 
to be assessed whether inducing intimal or adventitial lymphan-
giogenesis could enhance RCT and reverse atherosclerosis.

The most important complication of atherosclerosis is acute 
coronary syndrome, often culminating to myocardial infarction 
(MI). MI is followed by a robust inflammatory reaction charac-
terized by the coordinated mobilization of different leukocyte 
subsets, which aid in scavenging dead cardiomyocytes and 
released macromolecules while promoting granulation tissue 
formation and remodeling.188 It was recently shown that after 
MI, cardiac lymphatic vessels undergo a profound lymphan-
giogenic response and that ectopic VEGFC stimulation aug-
ments the lymphangiogenic response resulting in a transient 
improvement in post-MI cardiac function.56 Therefore, induc-
ing lymphangiogenesis could provide a pathway for inflam-
matory cell efflux to tip the balance in favor of wound healing 
within the injured adult heart.56 Recent studies demonstrated 
that VEGFC is an important regulator of coronary vasculature 
development, and it would be of great interest to determine 

whether this function relates to beneficial effects of VEGFC in 
a mouse model of MI.189,190 The roles of lymphatic vessels in 
MI and atherosclerosis are summarized in Figure 5. It is clear 
that much further analysis is needed to dissect the role of the 
lymphatic vessels in the pathogenesis of cardiovascular disease 
including dietary fat absorption and metabolism, adipose tissue 
inflammation, obesity, RCT, regulation of tissue inflammation, 
and innate and adaptive immunity. This work is now possible 
because of the many tools that have been created during the 
past decade, and it should lead to additional strategies to re-
duce cardiovascular morbidity and mortality.
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