Glycocalyx: What is it and what is it important?

Ulises Baltazar, MD, FACS, CLT
Assistant Professor of Vascular Surgery Weill-Cornell
University
Director of the Veno-Lymphatic Service

Houston Methodist Hospital Sugar Land Sugar Land, Texas "When you are a hammer.... everything looks like a nail"

What is
The Cornerstone of Life?

Microcirculation

The Cornerstone of Life

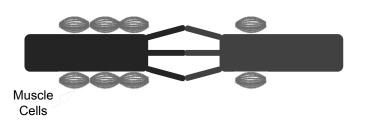
a.c

Microcirculation

- Capillary flow regulation (Getting the blood there)
- Hydrostatic Oncotic equilibrium (Osmosis Starling principle)
- Filtration (Lymph formation revised Starling principle)

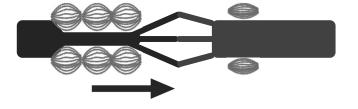
Microcirculation

Capillary flow regulation

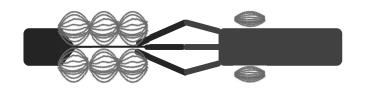


- · Capillary flow regulation
- Arteriolar myogenic response
- Venoarteriolar reflex
- Pre-capillary arteriolar vasomotion

Wienersperger NF, Bouskela, E Microcirculation in insulin resistance and diabetes more than and compilation" Diabetes Metab 2003:29, 6S77-6S87


Microcirculation

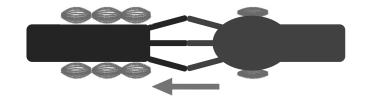
- · Capillary flow regulation
 - · Arteriolar myogenic response


Microcirculation

- · Capillary flow regulation
- Arteriolar myogenic response

Microcirculation

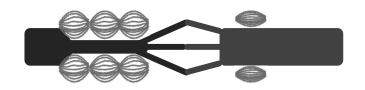
- · Capillary flow regulation
- Arteriolar myogenic response



Microcirculation

- · Capillary flow regulation
- Venoarteriolar reflex

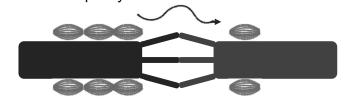
- · Capillary flow regulation
- Venoarteriolar reflex



- · Capillary flow regulation
- · Venoarteriolar reflex

Microcirculation

- · Capillary flow regulation
- Venoarteriolar reflex


Microcirculation

- · Capillary flow regulation
- Pre-capillary arteriolar vasomotor

Microcirculation

- Capillary flow regulation
- Pre-capillary arteriolar vasomotor

Microcirculation

- · Arteriolar vasomotion
 - · Nitric Oxide (NO)
 - Endothelium-Derived Hyperpolarizing Factor (EDHF)

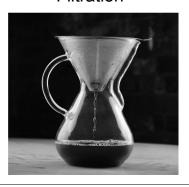
Microcirculation

- · Arteriolar vasomotion
 - Slow-wave
 - Arteriolar contraction oscillations of membrane potential
 - · High amplitude
 - 1-10 Hz

Intlagietta M, "Vasomotion and flow motion: physiological mechanisms and clinical evidence" Vasc Med Rev, 1990 1, 101-112, Bartlet II, Crane GJ, Neidl T, et al, "Electrophysiolocial basis of arteriolar

Bartlet II, Crane GJ, Neidl T, et al, "Electrophysiolocial basis of arteriolar vasomotion in vivo" J Vasc Res 2000, 37, 568-575

· Hydrostatic - Oncotic equilibrium


Microcirculation

McGraw-Hill animations Published June 4, 2017

Microcirculation

Filtration

Microcirculation

Carl Friedrich Weilheim Ludwig 1816-1895

 Suggested that lymph was formed by plasma filtration through capillary walls

Microcirculation

Julius Friedrich Cohnheim 1839-1884

 Expanded Ludwig's concept to vascular pressure and different capillary permeability throughout the body

Microcirculation

Rudolph Peter Heinrich Heidenhain 1834-1897

 1854 published his secretion theory and his work on lymphagogues substances (crayfish extract)

Ernest Henry Starling 1866-1927

 1893 Intravenous injection of peptones

Microcirculation

Starling Principle

- 1896 Basic concept of tissue fluid absorption
- · Incomplete

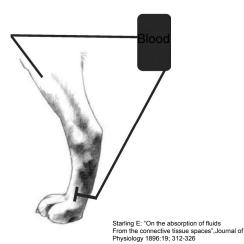
Microcirculation

ON THE ABSORPTION OF FLUIDS FROM THE CONNECTIVE TISSUE SPACES. By ERNEST H. STARLING. (Two Figures in Text.)

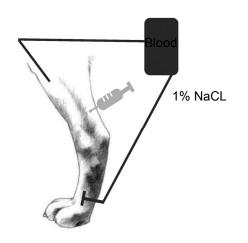
(From the Physiological Laboratory, Guy's Hospital.)

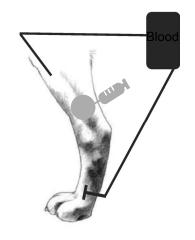
UNTLI within the last few years, all workers, who investigated the question of absorption by the blood vessels, confined their experiments to cases is which some substance, not occurring normally in the blood, was introduced into some connective tissue space. That, under these conditions, absorption by the blood vessels does take place, was shown by Majendie, and confirmed in recent years by Ascher'a awell as by Tu bby and myself. Although the case, with which this interchange place, must be of great importance for the normal metabolism of the lisease (as. g., the much discussed supply of God to the manusary gladed-cells), yet such processes will not serve to explain the absorption by the blood vessels of fluids having the same tonicity and the same part of the such processes will not serve to explain the absorption by the blood vessels of fluids having the same tonicity and the same composition in alla as a blood-plasma. We have to inquire first whether the blood vessels do absorb such inctonic fluids, and secondly the manner in which this absorption takes place.

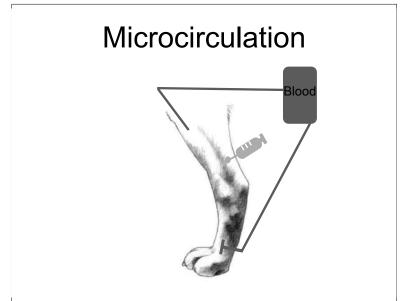
EVIDENCE AS TO ABSORPTION BY BLOOD VESSELS.

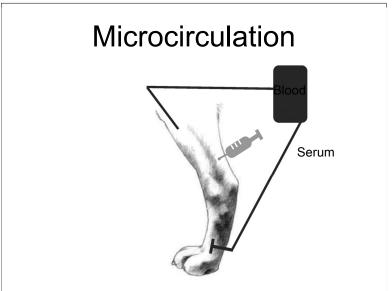

1. Absorption from the serous cavities.

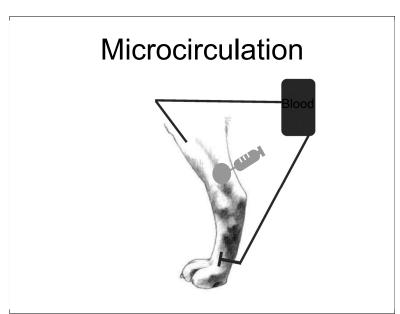
A number of experiments have been made recently on the subject of the absorption of isotonic fluids $(eg.\ 1^{\circ})_s$ alt solution or serum) from he serous cavities. Or low's showed that isotonic fluids were absorbed from the peritoneal cavity with considerable rapidity without producing ny corresponding lymph-flow from the thoracie duct, and concluded

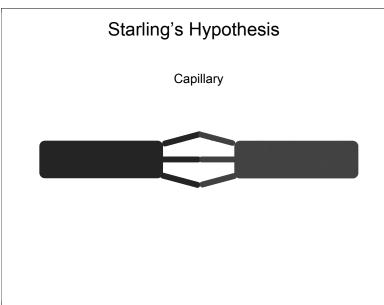

Zeitschrift f. Biologie, 1893. 247
 Pflüger's Archiv, Lex. 170. 1894.

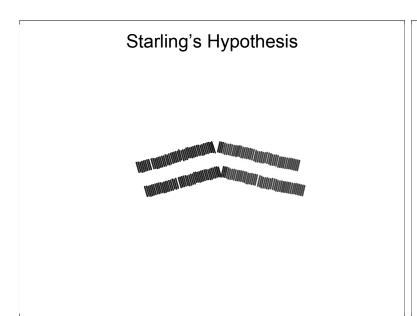

³ This Journal, xvz. 140, 1894.

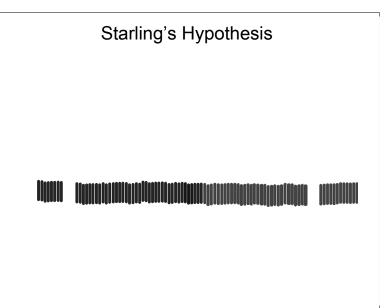

Microcirculation




Microcirculation







Intravascular Extravascular

Microcirculation

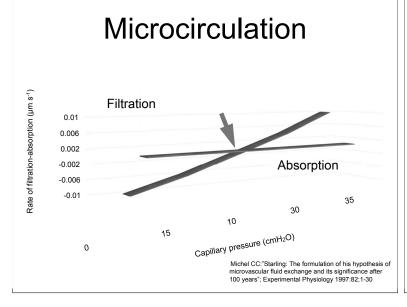
Luigi Liciani 1840-1919

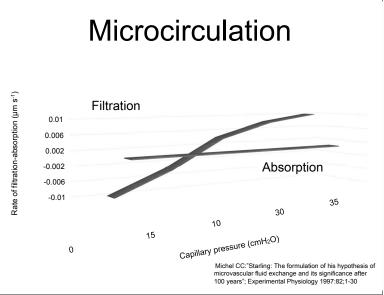
 1911 thought Starling concepts were "too simple"

Microcirculation

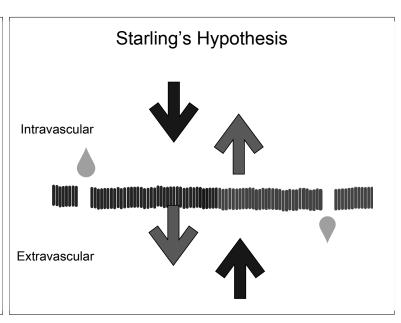
William D Haliburton 1860-1931

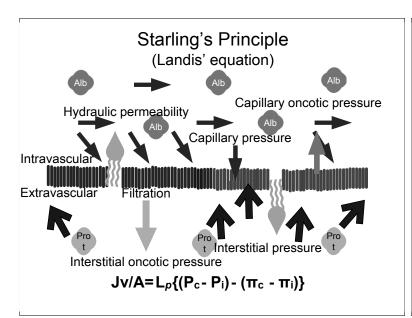
 1904 disputed Starling's discoveries and he believed that filtration dominated over secretion




Microcirculation

Eugene Markley Landis 1901-1987


- 1927 first direct experimental evidence of Starling's principle
- He measured hydrostatic pressure and filtration in frog's mesentery

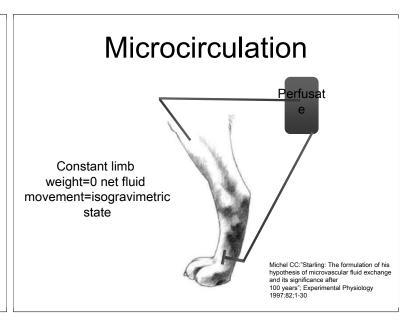


Microcirculation · 1930 Landis measured Mean arterialcapillary pressures in venous capillary human fingernail folds oncotic pressure at heart level 24 mmHg Mean Mean arterial venous capillary capillary pressure pressure 32 mmHg 12 mmHg Mean capillary pressure 20 mmHg Michel CC: "Starling: The formulation of his hypothesis of microvascular fluid exchange and its significance after 100 years"; Experimental Physiology 1997:82;1-30

Starling's Principle (Landis' equation)

$$Jv/A=L_{\rho}\left\{ \left(P_{c}-P_{i}\right)\begin{array}{ccc} -&-\\ \left(\pi_{c}&\pi_{i}\right)\right\} \end{array}$$

Microcirculation

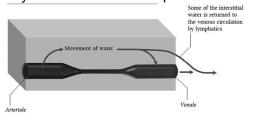


Armando Soto-Rivera 1920-2004

John Richard Pappenheimer 1915-2007

 1948 coined the term isogravimetric state

Capillary pressure varies according the plasma oncotic pressure to achieve isogravimetric state


Rate of filtration-reabsorption=P_c-P_{c(iso)}

Michel CC: Starling: The formulation of his hypothesis of microvascular fluid exchange and its significance after 100 years"; Experimental Physiology 1997.82;1-30

Microcirculation

Classic Starling Principle

- · Landis, Pappenheimer and Soto-Rivera
- Krogh, Landis and Turner 1931
 - · Hydrostatic and oncotic pressures

www.derangedplansiotogs.tipme2017

Microcirculation

Albert Jan Staverman 1912-1993

Microcirculation

NON-EQUILIBRIUM THERMODYNAMICS OF MEMBRANE PROCESSES

1951 Staverman's
Reflection
Coefficient
University of van Leiden
Netherlands

By A. J. STAVERMAN
Plastics Research Institute T.N.O., Delft, Netherlands
Received 21st May, 1951; in final form 10th August, 1951

By applying the inforty of non-equinorium intermodynamics to memorane processes it is found that the action of a membrane in a system containing n components is completely characterized by $\frac{1}{2}n(n+1)$ thermodynamical constants. In measurements of transference numbers, membrane potentials and electrokinetic

ficient independent data are obtained, the thermodynamical constants may be computed. The relations between phenomenological and thermodynamical constants are given. Also a number of relations between different phenomenological constants is given, which must hold independently of any model of the action of the membrane. Some of these relations, such as Nernst's equation for the diffusion potential and some relations between electrokinetic constants have been derived before by quasi-thermodynamical reasonings or from calculations on models. Others, such as the relation between mechanical and

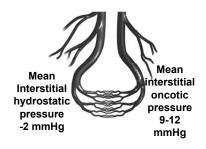
Microcirculation

· Reflection coefficient

$$\sigma = \frac{\Pi_{(obs)}}{\Pi_{(theory)}}$$

$$Jv/A = L_p\{(P_c - P_i) - (\pi_c - \pi_i)\}$$

 $Jv/A = L_{\rho}\{(P_c - P_i) - \sigma (\pi_c - \pi_i)\}$


Microcirculation

Arthur Clifford Guyton 1919-2003

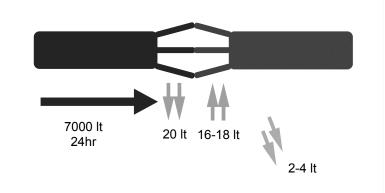
 1963 Guyton measured the interstitial hydrostatic and oncotic pressures

Microcirculation

Microcirculation

Mean arterialvenous capillary oncotic pressure 24 mmHg arterial venous capillary capillary pressure pressure Mean 12 mmHg 32 mmHg Mean interstitial Interstitial Mean oncotic hydrostatic capillary pressure pressure pressure 9-12 -2 mmHg 20 mmHg mmHg

Microcirculation



Eugene Markley Landis 1901-1987

John Richard Pappenheimer 1915-2007

1963 quatinfied the values of filtration-absorption

Ernest Ruska 1906-1988

Max Knoll 1897-1969

- 1931 developed the electron microscope10 nm resolution
- 1944 2 nm resolution

Microcirculation

James Frederic Danielli 1911-1984

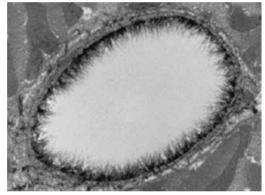
 1940 First postulated the presence of the "fussy" endothelial layer

Microcirculation

John H Luft

 1966 First demonstrated the Glycocalyx using cationic dye

Microcirculation


John H Luft

 1966 First demonstrated the Glycocalyx using cationic dye

Microcirculation

Glycocalyx

Reitsma S, Slaaf D, Vink H, et al: "The endothelial glycocalyx: composition

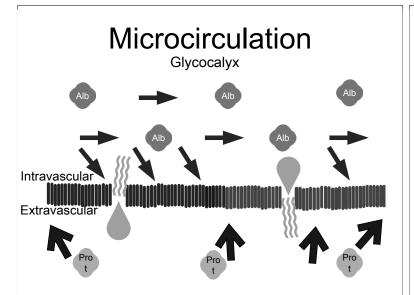
Microcirculation

Glycocalyx

- · Hydrogel-like layer
- 500-2000 nm depending on the anatomy and size of the vessel
- Total surface 4000 7000 m² (0.98 1.7 acres)
- · Negative net charge

Yang Y, Schmidt E: "The endothelial glycocalyx: Am important regulate of the pulmonary vascular barrier" Tissue Barriers 2013:1:1

Glycocalyx

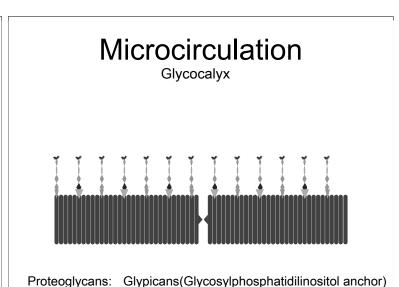

- Functions
 - · Molecular sieve determine oncotic forces across the endothelium
 - · Hydrodynamic exclusion layer preventing interaction between red cells and cell membranes
 - · Modulating leukocyte attachment and rolling
 - Transducer of mechanical forces to the intracellular cytoskeleton

Microcirculation

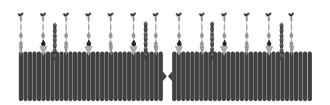
· Structure

Glycocalyx

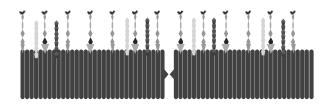
- · Proteoglycans: Syndecans, Glypicans, Perlecan, Versicans, Decorins, Biglycans, Mimecans
- · Glycoproteins: Selectins, Integrins and Immunoglobulins
- · Glycosaminoglycans: Heparan Sulfate, Condroitin Sulfate, Dermatan Sulfate, Keratan Sulfate and Hyaluronan (hyaluronic acid)
- Soluble components: Albumin, sialic acid, orosomucoid, etc Reitsma S, Slaaf D, Vink H, et al: "The endothelial glycocalyx: composition



Microcirculation

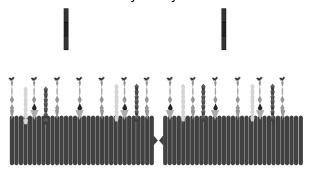

Glycocalyx

Microcirculation Glycocalyx Proteoglycans: Syndecans (Specific domain)


Glycocalyx

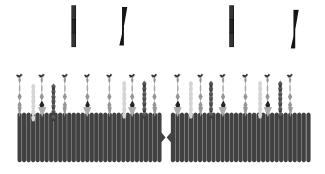
Proteoglycans: Perlecan (secreted)

Microcirculation


Glycocalyx

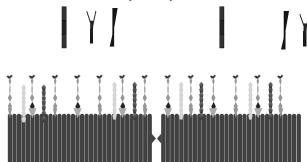
Proteoglycans: Versican (secreted)

Microcirculation


Glycocalyx

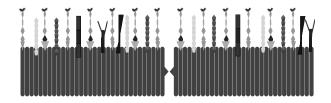
Glycoproteins: Selectins: P and E leukocyte endothelial interaction

Microcirculation


Glycocalyx

Glycoproteins:Integrins: heterodimeric molecules $\,\alpha$ or $\,\beta$ platelet endothelial interaction

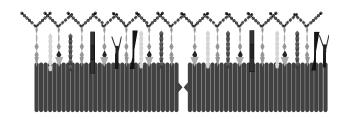
Microcirculation


Glycocalyx

Glycoproteins: Immunoglobulin superfamily: ICAM-1 and 2, VCAM-1 and PCAM-1

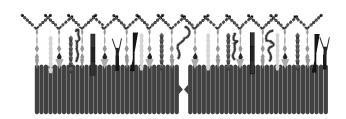
Microcirculation

Glycocalyx


Glycocalyx

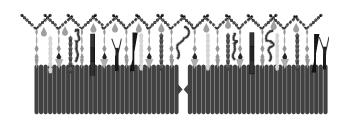
Glycosaminoglycans: Heparan Sulfate (50%-90%)

Microcirculation


Glycocalyx

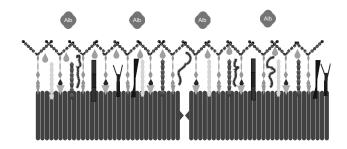
Glycosaminoglycans: Condroitin Sulfate

Microcirculation

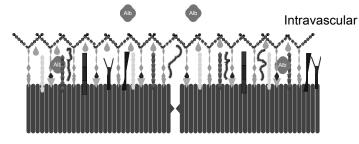

Glycocalyx

Glycosaminoglycans: Hyaluronan

Microcirculation

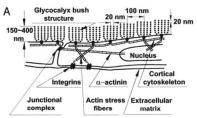

Glycocalyx

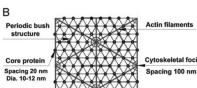
Hydrated


Microcirculation

Glycocalyx

Microcirculation


Glycocalyx



Endothelial Surface Layer (ESL)

Extravascular

Glycocalyx

Weinbaum S, Zhang X, Han Y et al:"Mechanotransduction and flow across the endothelial glycocalyx" PANS 2003:100;13

Microcirculation

Charles C Michel

J Rodney Levick

Roger H Adamson

Sheldon Weinbaum

Microcirculation

Glycocalyx

- Functions
 - Hydrodynamic exclusion layer preventing interaction between red cells and cell membranes
 - · Modulating leukocyte attachment and rolling
 - Transducer of mechanical forces to the intracellular cytoskeleton
 - Molecular sieve determine oncotic forces across the endothelium
 - · "Reservoir"

Weinbaum S, Zhang X, Han Y et al: "Mechanotransduction and flow

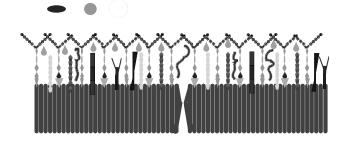
Microcirculation

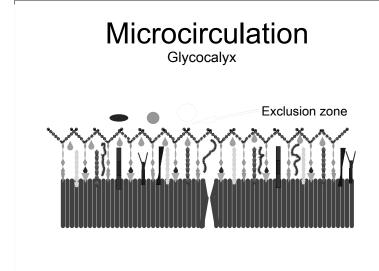
Sheldon Weinbaum

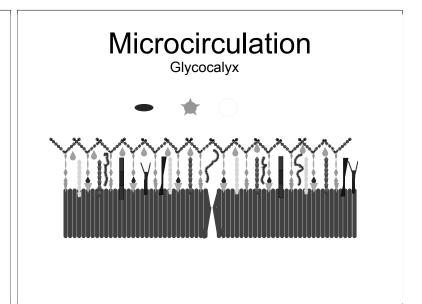
2003 "Mechanotransduction and flow across the endothelial Glycocalyx"

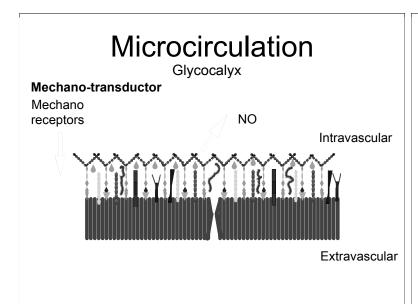
Microcirculation

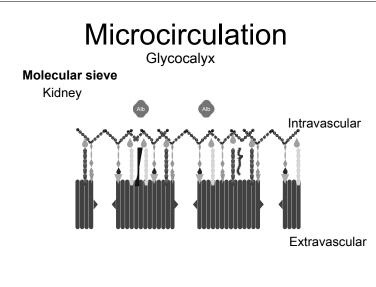
Glycocalyx

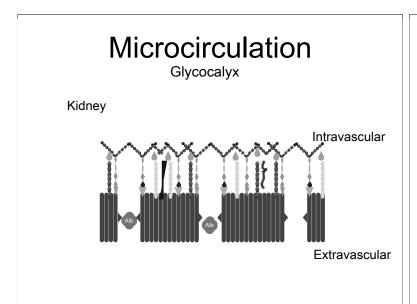

Exclusion layer

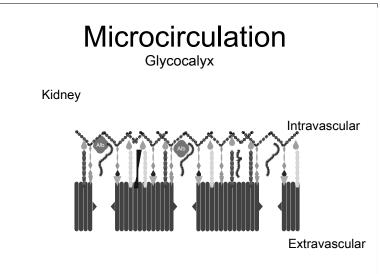

Negative charge Intravascular


Extravascular

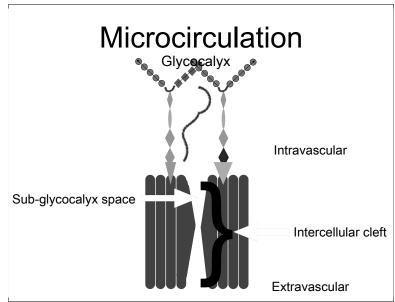

Microcirculation

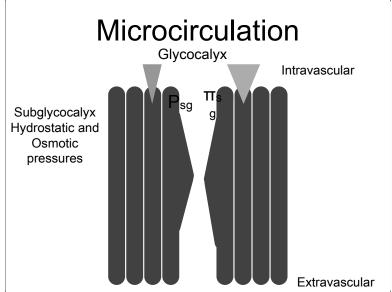

Glycocalyx

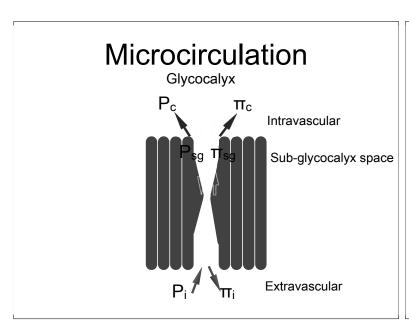


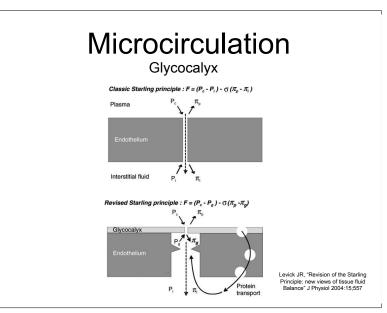


Roger H Adamson

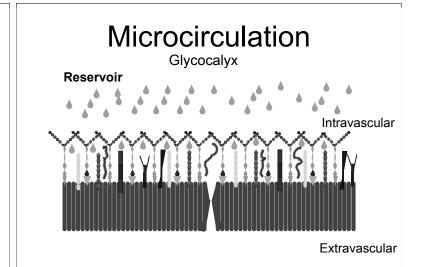

2004 "Oncotic pressures opposing filtration across non-fenestrated rat micro vessels"


Despite having the same oncotic Pressure in the lumen and the Interstitium there was a 70% difference

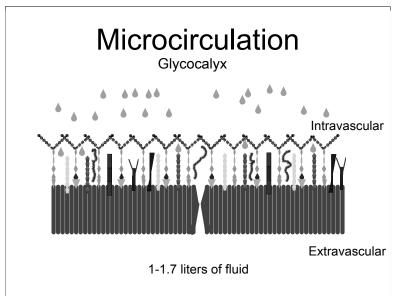



Microcirculation Glycocalyx Intravascular

Extravascular

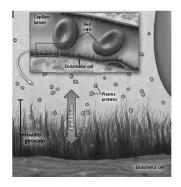

- Glycocalyx "Hemodynamic states"
 - Steady state: Constant capillary hydrostatic pressures produce constant filtration throughout the capillary
 - · Transient state: Sudden variation on capillary hydrostatic pressure favoring absorption for a short period of time until a "new" steady state is achieved and filtration resumes

Microcirculation


$$Jv/A = L_p\{(P_c - P_i) - \sigma (\pi_c - \pi_i)\}$$

Microcirculation

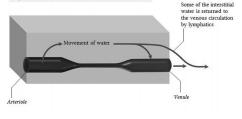
 $Jv/A = L_p\{(P_c - P_{sg}) - \sigma (\pi_c \pi_{sg})\}$


Microcirculation Glycocalyx Intravascular Extravascular

- · Concepts that now make sense"
 - Hypoalbuminemia is a marker of the severity of the disease, nevertheless treating it is a no clinical benefit
 - ARDS have low plasma and transferrin concentrations, treating this with albumin with or without diuretics has no benefit
 - Negative fluid balance rather that COP difference improves alveolar to arterial oxygen tension ratio in ARDS
 - In septic and non-septic patients fluid
 resuscitation with albumin improves cardiac output but not pulmonary edepmays model of transvascular fluid exchange: an improved paradigm for prescribing intravenous fluid therapy' BJA 2012-108:3

Microcirculation

Glycocalyx



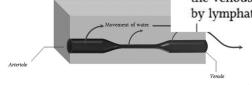
Mayburgh JA, Mythen MG: "Resuscitation Fluid" N Engl J Med 2013;369:13

Microcirculation

Classic Starling Principle

- · Landis, Pappenheimer and Soto-Rivera
- · Krogh, Landis and Turner 1931
 - · Hydrostatic and oncotic pressures

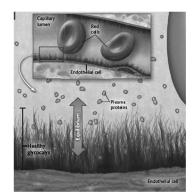
www.derangedphysiology.com 2017


Microcirculation

Glycocalyx

Revised Starling Principle

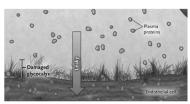
- Adamson 2004, Weinbaum 2004, Levick and Michel 2010
- Glycocalyx function


Most of the interstitial water is returned to the venous circulation by lymphatics

www.derangedphysiology.com 2017

Microcirculation

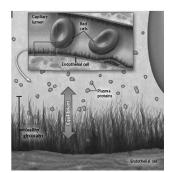
Glycocalyx



Mayburgh JA, Mythen MG: "Resuscitation Fluid" N Engl J Med 2013;369:13

Microcirculation

Glycocalyx



- Hyperglycemia
- Hypercholesterolemia
- · Hypervolemia
- Ischemia-reperfussion
- Trauma
- Inflammation

Mayburgh JA, Mythen MG: "Resuscitation Fluid" N Engl J Med 2013;369:13

Glycocalyx

- Antioxidants
- · N-acetyl-cysteine
- Albumin
- FFP
- Heparin
- · Antithrombin III
- Sulodexide

Mayburgh JA, Mythen MG: "Resuscitation Fluid" N Engl J Med 2013;369:13

Microcirculation

If you want to go fast, go alone.

If you want to go far, go together.

-African Proverb-

Lymphedema treatment

TEAM EFFORT

Including the patient

THANK YOU